Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497754

RESUMO

Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial-temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial-temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial-temporal regulation of this process.


Assuntos
Apoptose , Microscopia , Humanos , Animais , Camundongos , Sobrevivência Celular , Microscopia Intravital , Reconhecimento Psicológico
2.
Front Immunol ; 14: 1242531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554323

RESUMO

Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the "atypical" nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, ß-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo, we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Transdução de Sinais , Animais , Camundongos , Ligantes , Receptores de Quimiocinas/metabolismo
3.
Front Immunol ; 14: 1133394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153591

RESUMO

Atypical chemokine receptors (ACKRs) form a small subfamily of receptors (ACKR1-4) unable to trigger G protein-dependent signaling in response to their ligands. They do, however, play a crucial regulatory role in chemokine biology by capturing, scavenging or transporting chemokines, thereby regulating their availability and signaling through classical chemokine receptors. ACKRs add thus another layer of complexity to the intricate chemokine-receptor interaction network. Recently, targeted approaches and screening programs aiming at reassessing chemokine activity towards ACKRs identified several new pairings such as the dimeric CXCL12 with ACKR1, CXCL2, CXCL10 and CCL26 with ACKR2, the viral broad-spectrum chemokine vCCL2/vMIP-II, a range of opioid peptides and PAMP-12 with ACKR3 as well as CCL20 and CCL22 with ACKR4. Moreover, GPR182 (ACKR5) has been lately proposed as a new promiscuous atypical chemokine receptor with scavenging activity notably towards CXCL9, CXCL10, CXCL12 and CXCL13. Altogether, these findings reveal new degrees of complexity of the chemokine network and expand the panel of ACKR ligands and regulatory functions. In this minireview, we present and discuss these new pairings, their physiological and clinical relevance as well as the opportunities they open for targeting ACKRs in innovative therapeutic strategies.


Assuntos
Relevância Clínica , Transdução de Sinais , Ligantes , Quimiotaxia , Ligação Proteica
4.
PLoS Biol ; 21(5): e3002111, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37159457

RESUMO

Atypical chemokine receptors (ACKRs) scavenge chemokines and can contribute to gradient formation by binding, internalizing, and delivering chemokines for lysosomal degradation. ACKRs do not couple to G-proteins and fail to induce typical signaling induced by chemokine receptors. ACKR3, which binds and scavenges CXCL12 and CXCL11, is known to be expressed in vascular endothelium, where it has immediate access to circulating chemokines. ACKR4, which binds and scavenges CCL19, CCL20, CCL21, CCL22, and CCL25, has also been detected in lymphatic and blood vessels of secondary lymphoid organs, where it clears chemokines to facilitate cell migration. Recently, GPR182, a novel ACKR-like scavenger receptor, has been identified and partially deorphanized. Multiple studies point towards the potential coexpression of these 3 ACKRs, which all interact with homeostatic chemokines, in defined cellular microenvironments of several organs. However, an extensive map of ACKR3, ACKR4, and GPR182 expression in mice has been missing. In order to reliably detect ACKR expression and coexpression, in the absence of specific anti-ACKR antibodies, we generated fluorescent reporter mice, ACKR3GFP/+, ACKR4GFP/+, GPR182mCherry/+, and engineered fluorescently labeled ACKR-selective chimeric chemokines for in vivo uptake. Our study on young healthy mice revealed unique and common expression patterns of ACKRs in primary and secondary lymphoid organs, small intestine, colon, liver, and kidney. Furthermore, using chimeric chemokines, we were able to detect distinct zonal expression and activity of ACKR4 and GPR182 in the liver, which suggests their cooperative relationship. This study provides a broad comparative view and a solid stepping stone for future functional explorations of ACKRs based on the microanatomical localization and distinct and cooperative roles of these powerful chemokine scavengers.


Assuntos
Transdução de Sinais , Animais , Camundongos , Quimiocina CCL19/metabolismo , Movimento Celular
5.
PLoS One ; 18(5): e0285597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252916

RESUMO

Atypical chemokine receptor 3 (ACKR3) is a scavenger of the chemokines CXCL11 and CXCL12 and of several opioid peptides. Additional evidence indicates that ACKR3 binds two other non-chemokine ligands, namely the peptide hormone adrenomedullin (AM) and derivatives of the proadrenomedullin N-terminal 20 peptide (PAMP). AM exhibits multiple functions in the cardiovascular system and is essential for embryonic lymphangiogenesis in mice. Interestingly, AM-overexpressing and ACKR3-deficient mouse embryos both display lymphatic hyperplasia. Moreover, in vitro evidence suggested that lymphatic endothelial cells (LECs), which express ACKR3, scavenge AM and thereby reduce AM-induced lymphangiogenic responses. Together, these observations have led to the conclusion that ACKR3-mediated AM scavenging by LECs serves to prevent overshooting AM-induced lymphangiogenesis and lymphatic hyperplasia. Here, we further investigated AM scavenging by ACKR3 in HEK293 cells and in human primary dermal LECs obtained from three different sources in vitro. LECs efficiently bound and scavenged fluorescent CXCL12 or a CXCL11/12 chimeric chemokine in an ACKR3-dependent manner. Conversely, addition of AM induced LEC proliferation but AM internalization was found to be independent of ACKR3. Similarly, ectopic expression of ACKR3 in HEK293 cells did not result in AM internalization, but the latter was avidly induced upon co-transfecting HEK293 cells with the canonical AM receptors, consisting of calcitonin receptor-like receptor (CALCRL) and receptor activity-modifying protein (RAMP)2 or RAMP3. Together, these findings indicate that ACKR3-dependent scavenging of AM by human LECs does not occur at ligand concentrations sufficient to trigger AM-induced responses mediated by canonical AM receptors.


Assuntos
Adrenomedulina , Células Endoteliais , Receptores CXCR , Humanos , Adrenomedulina/genética , Quimiocina CXCL11 , Células Endoteliais/metabolismo , Células HEK293 , Hiperplasia , Receptores de Adrenomedulina , Receptores CXCR/genética
7.
Nat Immunol ; 24(4): 604-611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879067

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autoanticorpos , Síndrome Pós-COVID-19 Aguda , Quimiocinas
8.
J Biol Eng ; 17(1): 5, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694208

RESUMO

Cell migration is a pivotal biological process, whose dysregulation is found in many diseases including inflammation and cancer. Advances in microscopy technologies allow now to study cell migration in vitro, within engineered microenvironments that resemble in vivo conditions. However, to capture an entire 3D migration chamber for extended periods of time and with high temporal resolution, images are generally acquired with low resolution, which poses a challenge for data analysis. Indeed, cell detection and tracking are hampered due to the large pixel size (i.e., cell diameter down to 2 pixels), the possible low signal-to-noise ratio, and distortions in the cell shape due to changes in the z-axis position. Although fluorescent staining can be used to facilitate cell detection, it may alter cell behavior and it may suffer from fluorescence loss over time (photobleaching).Here we describe a protocol that employs an established deep learning method (U-NET), to specifically convert transmitted light (TL) signal from unlabeled cells imaged with low resolution to a fluorescent-like signal (class 1 probability). We demonstrate its application to study cancer cell migration, obtaining a significant improvement in tracking accuracy, while not suffering from photobleaching. This is reflected in the possibility of tracking cells for three-fold longer periods of time. To facilitate the application of the protocol we provide WID-U, an open-source plugin for FIJI and Imaris imaging software, the training dataset used in this paper, and the code to train the network for custom experimental settings.

9.
bioRxiv ; 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35664993

RESUMO

Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 infection and autoimmune disorders, but they target different chemokines than those in COVID-19. Monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary: Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and predict lack of long COVID.

10.
J Immunol ; 208(6): 1493-1499, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35181636

RESUMO

Two-photon intravital microscopy (2P-IVM) has become a widely used technique to study cell-to-cell interactions in living organisms. Four-dimensional imaging data obtained via 2P-IVM are classically analyzed by performing automated cell tracking, a procedure that computes the trajectories followed by each cell. However, technical artifacts, such as brightness shifts, the presence of autofluorescent objects, and channel crosstalking, affect the specificity of imaging channels for the cells of interest, thus hampering cell detection. Recently, machine learning has been applied to overcome a variety of obstacles in biomedical imaging. However, existing methods are not tailored for the specific problems of intravital imaging of immune cells. Moreover, results are highly dependent on the quality of the annotations provided by the user. In this study, we developed CANCOL, a tool that facilitates the application of machine learning for automated tracking of immune cells in 2P-IVM. CANCOL guides the user during the annotation of specific objects that are problematic for cell tracking when not properly annotated. Then, it computes a virtual colocalization channel that is specific for the cells of interest. We validated the use of CANCOL on challenging 2P-IVM videos from murine organs, obtaining a significant improvement in the accuracy of automated tracking while reducing the time required for manual track curation.


Assuntos
Comunicação Celular , Microscopia Intravital , Animais , Artefatos , Rastreamento de Células , Computadores , Microscopia Intravital/métodos , Camundongos
11.
Front Immunol ; 13: 1067885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713377

RESUMO

Chemotaxis is an essential physiological process, often harnessed by tumors for metastasis. CXCR4, its ligand CXCL12 and the atypical receptor ACKR3 are overexpressed in many human cancers. Interfering with this axis by ACKR3 deletion impairs lymphoma cell migration towards CXCL12. Here, we propose a model of how ACKR3 controls the migration of the diffused large B-cell lymphoma VAL cells in vitro and in vivo in response to CXCL12. VAL cells expressing full-length ACKR3, but not a truncated version missing the C-terminus, can support the migration of VAL cells lacking ACKR3 (VAL-ko) when allowed to migrate together. This migration of VAL-ko cells is pertussis toxin-sensitive suggesting the involvement of a Gi-protein coupled receptor. RNAseq analysis indicate the expression of chemotaxis-mediating LTB4 receptors in VAL cells. We found that LTB4 acts synergistically with CXCL12 in stimulating the migration of VAL cells. Pharmacologic or genetic inhibition of BLT1R markedly reduces chemotaxis towards CXCL12 suggesting that LTB4 enhances in a contact-independent manner the migration of lymphoma cells. The results unveil a novel mechanism of cell-to-cell-induced migration of lymphoma.


Assuntos
Leucotrieno B4 , Linfoma , Receptores CXCR , Humanos , Movimento Celular , Quimiocina CXCL12/metabolismo , Leucotrieno B4/metabolismo , Linfócitos/metabolismo , Receptores CXCR4/genética , Transdução de Sinais , Receptores CXCR/metabolismo
12.
Science ; 374(6573): eabk0410, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882480

RESUMO

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)­dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2­binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type­specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.


Assuntos
Catarata/patologia , Senescência Celular , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cristalino/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Senilidade Prematura , Animais , Evolução Biológica , Proteínas de Ligação ao Cálcio/metabolismo , Catarata/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Mol Brain ; 14(1): 151, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583741

RESUMO

The atypical chemokine receptor 3, ACKR3, is a G protein-coupled receptor, which does not couple to G proteins but recruits ßarrestins. At present, ACKR3 is considered a target for cancer and cardiovascular disorders, but less is known about the potential of ACKR3 as a target for brain disease. Further, mouse lines have been created to identify cells expressing the receptor, but there is no tool to visualize and study the receptor itself under physiological conditions. Here, we engineered a knock-in (KI) mouse expressing a functional ACKR3-Venus fusion protein to directly detect the receptor, particularly in the adult brain. In HEK-293 cells, native and fused receptors showed similar membrane expression, ligand induced trafficking and signaling profiles, indicating that the Venus fusion does not alter receptor signaling. We also found that ACKR3-Venus enables direct real-time monitoring of receptor trafficking using resonance energy transfer. In ACKR3-Venus knock-in mice, we found normal ACKR3 mRNA levels in the brain, suggesting intact gene transcription. We fully mapped receptor expression across 14 peripheral organs and 112 brain areas and found that ACKR3 is primarily localized to the vasculature in these tissues. In the periphery, receptor distribution aligns with previous reports. In the brain there is notable ACKR3 expression in endothelial vascular cells, hippocampal GABAergic interneurons and neuroblast neighboring cells. In conclusion, we have generated Ackr3-Venus knock-in mice with a traceable ACKR3 receptor, which will be a useful tool to the research community for interrogations about ACKR3 biology and related diseases.


Assuntos
Proteínas de Bactérias/genética , Encéfalo/irrigação sanguínea , Técnicas de Introdução de Genes , Genes Reporter , Proteínas Luminescentes/genética , Receptores CXCR/genética , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/farmacocinética , Biomarcadores , Sistemas Computacionais , Células Endoteliais/química , Células Endoteliais/citologia , Neurônios GABAérgicos/química , Neurônios GABAérgicos/citologia , Células HEK293 , Humanos , Interneurônios/química , Interneurônios/citologia , Ligantes , Proteínas Luminescentes/análise , Proteínas Luminescentes/farmacocinética , Camundongos , Especificidade de Órgãos , Receptores CXCR/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual , beta-Arrestina 1/metabolismo
14.
PLoS One ; 16(4): e0249068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857173

RESUMO

Atypical chemokine receptor ACKR3 (formerly CXCR7) is a scavenging receptor that has recently been implicated in murine lymphatic development. Specifically, ACKR3-deficiency was shown to result in lymphatic hyperplasia and lymphedema, in addition to cardiac hyperplasia and cardiac valve defects leading to embryonic lethality. The lymphatic phenotype was attributed to a lymphatic endothelial cell (LEC)-intrinsic scavenging function of ACKR3 for the vascular peptide hormone adrenomedullin (AM), which is also important during postnatal lymphangiogenesis. In this study, we investigated the expression of ACKR3 in the lymphatic vasculature of adult mice and its function in postnatal lymphatic development and function. We show that ACKR3 is widely expressed in mature lymphatics and that it exerts chemokine-scavenging activity in cultured murine skin-derived LECs. To investigate the role of LEC-expressed ACKR3 in postnatal lymphangiogenesis and function during adulthood, we generated and validated a lymphatic-specific, inducible ACKR3 knockout mouse. Surprisingly, in contrast to the reported involvement of ACKR3 in lymphatic development, our analyses revealed no contribution of LEC-expressed ACKR3 to postnatal lymphangiogenesis, lymphatic morphology and drainage function.


Assuntos
Células Endoteliais/metabolismo , Linfangiogênese , Vasos Linfáticos/citologia , Receptores CXCR/metabolismo , Animais , Vasos Linfáticos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR/genética
15.
Front Immunol ; 12: 804159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046959

RESUMO

The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.


Assuntos
Quimiotaxia de Leucócito/imunologia , Inflamação/imunologia , Animais , Humanos , Microscopia Intravital/métodos
17.
Front Immunol ; 11: 550824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072091

RESUMO

The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and ß-arrestins-mediated signaling pathways to sustain chemotaxis. We generated ß-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily ß-arrestin1 dependent, while chemotaxis requires both ß-arrestin1 and ß-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on ß-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the ß-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.


Assuntos
Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Receptores CXCR4/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , Actinas/química , Actinas/metabolismo , Sistemas CRISPR-Cas , Quimiotaxia , Edição de Genes , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico , beta-Arrestina 1/genética , beta-Arrestina 2/genética
18.
Cell Rep ; 32(5): 107951, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755592

RESUMO

The marginal zone (MZ) contributes to the highly organized spleen microarchitecture. We show that expression of atypical chemokine receptor 3 (ACKR3) defines two equal-sized populations of mouse MZ B cells (MZBs). ACKR3 is required for development of a functional MZ and for positioning of MZBs. Deletion of ACKR3 on B cells distorts the MZ, and MZBs fail to deliver antigens to follicles, reducing humoral responses. Reconstitution of MZ-deficient CD19ko mice shows that ACKR3- MZBs can differentiate into ACKR3+ MZBs, but not vice versa. The lack of a MZ is rescued by adoptive transfer of ACKR3-sufficient, and less by ACKR3-deficient, follicular B cells (FoBs); hence, ACKR3 expression is crucial for establishment of the MZ. The inability of CD19ko mice to respond to T-independent antigen is rescued when ACKR3-proficient, but not ACKR3-deficient, FoBs are transferred. Accordingly, ACKR3-deficient FoBs are able to reconstitute the MZ if the niche is pre-established by ACKR3-proficient MZBs.


Assuntos
Linfócitos B/metabolismo , Receptores CXCR/metabolismo , Transferência Adotiva , Animais , Antígenos/metabolismo , Antígenos CD19/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/metabolismo
19.
Nat Commun ; 11(1): 3677, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699279

RESUMO

Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.


Assuntos
Linfócitos B/imunologia , Microambiente Celular/imunologia , Quimiocina CXCL13/metabolismo , Células Dendríticas Foliculares/imunologia , Imunidade Adaptativa , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Linhagem Celular , Quimiocina CXCL13/imunologia , Simulação por Computador , Células Dendríticas Foliculares/citologia , Células Dendríticas Foliculares/metabolismo , Matriz Extracelular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Modelos Biológicos , Tonsila Palatina/citologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo
20.
J Leukoc Biol ; 107(6): 1137-1154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32533638

RESUMO

The chemokine CCL20 is broadly produced by endothelial cells in the liver, the lung, in lymph nodes and mucosal lymphoid tissues, and recruits CCR6 expressing leukocytes, particularly dendritic cells, mature B cells, and subpopulations of T cells. How CCL20 is systemically scavenged is currently unknown. Here, we identify that fluorescently labeled human and mouse CCL20 are efficiently taken-up by the atypical chemokine receptor ACKR4. CCL20 shares ACKR4 with the homeostatic chemokines CCL19, CCL21, and CCL25, although with a lower affinity. We demonstrate that all 4 human chemokines recruit ß-arrestin1 and ß-arrestin2 to human ACKR4. Similarly, mouse CCL19, CCL21, and CCL25 equally activate the human receptor. Interestingly, at the same chemokine concentration, mouse CCL20 did not recruit ß-arrestins to human ACKR4. Further cross-species analysis suggests that human ACKR4 preferentially takes-up human CCL20, whereas mouse ACKR4 similarly internalizes mouse and human CCL20. Furthermore, we engineered a fluorescently labeled chimeric chemokine consisting of the N-terminus of mouse CCL25 and the body of mouse CCL19, termed CCL25_19, which interacts with and is taken-up by human and mouse ACKR4.


Assuntos
Quimiocina CCL19/metabolismo , Quimiocina CCL20/metabolismo , Quimiocina CCL21/metabolismo , Quimiocinas CC/metabolismo , Receptores CCR/metabolismo , beta-Arrestinas/genética , Sequência de Aminoácidos , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Sítios de Ligação , Linhagem Celular , Quimiocina CCL19/química , Quimiocina CCL19/genética , Quimiocina CCL20/química , Quimiocina CCL20/genética , Quimiocina CCL21/química , Quimiocina CCL21/genética , Quimiocinas CC/química , Quimiocinas CC/genética , Células HEK293 , Células HeLa , Humanos , Ligantes , Camundongos , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Receptores CCR/química , Receptores CCR/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...